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Abstract. Based on the phase-space generating functional of the Green function for a constrained
Hamiltonian system with a singular higher-order Lagrangian, the canonical Ward identities for such
a system under the local and global transformation have been derived, respectively. The quantal
conserved charge (QCC) under the global symmetry transformation is also deduced. In general,
these QCCs are different from the Noether charge in classical theory. A comparison of these quantal
conservation laws with those deriving from the configuration-space path integral for gauge-invariant
theories is discussed. We give a preliminary application of our results to Yang–Mills (YM) theory
and Chern–Simons (CS) theory with higher-order derivatives. A new form of gauge-ghost proper
vertices and new conserved charges at the quantum level are obtained for the YM theory; the quantal
Becchi–Rouet–Stora (BRS) conserved charges and conserved angular momentum are also derived
for CS theory. The advantage of our canonical formalism is that we do not carry out the integration
over the canonical momenta in the phase-space path integral as usually performed.

1. Introduction

Symmetry is now a fundamental concept in modern physics. The connection between
continuous global symmetries and conservation laws are usually referred to as the first Noether
theorem in classical theory. The classical second Noether theorem or Noether identity refers to
invariance of the action integral of the system under a local transformation parametrized byr

arbitrary functions and their derivatives. If an action is invariant under such transformation, then
there arer differential identities (Noether identities) which involve the functional derivatives
of the action integral. In quantum theory, the Noether identity corresponds to the Ward (or
Ward–Takahashi) identity. Noether theorems and their generalization are usually formulated
in terms of Lagrangian variables in configuration space [1, 2]. The identities relating to
the Green function in QED were obtained by Ward [3] and Takahashi [4]. In non-Abelian
theories, their role is played by the so-called generalized Ward identities, first obtained by
Slavonov [5] and Taylor [6]. Ward identities and their generalization play an important role
in modern field theories. They are useful tools for the renormalization of field theories
and calculation in practical problems (for example, in QCD). Ward identities have been
generalized to the supersymmetry [7] and superstring theories [8] and other problems. All
these derivations for Ward identities in the functional integration method are usually performed
by using a configuration-space generating functional [9–11] which is valid for the case when
the integration in the phase-space path integral over the canonical momenta belongs to the
Gauss-type category. Phase-space path integrals are more basic than configuration-space
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path integrals: the latter provide for a Hamiltonian quadratic in the canonical momenta,
whereas the former apply to arbitrary Hamiltonians. Thus, the phase-space form of the path
integral is a necessary precursor to the configuration space form of the path integral [12]. For
certain cases where the phase-space path integral can be simplified by carrying out explicit
integration over canonical momenta in which the ‘mass’ depends on coordinates [13, 14] or
depends on coordinates and momenta [15], the effective Lagrangians in configuration space are
singularities with a delta function. For the constrained Hamiltonian system with complicated
constraints, especially for the system with singular high-order Lagrangian, it is very difficult or
even impossible to carry out the integration over canonical momenta. The dynamical systems
described in terms of high-order Lagrangians obtained by many authors are of much interest
in connection with gauge theories, gravity, supersymmetry, string models and other problems
[16]. Therefore, investigation of the symmetry properties of the system in the phase space has
more basic sense. Based on the invariance of the phase-space generating functional of the Green
function for a system with a singular first-order Lagrangian under the local transformation of
canonical variables in extended phase space, the canonical Ward identity (CWI) for such a
system has been studied by one of the authors in a previous work [17]; for a system with
a singular higher-order Lagrangian a brief discussion has also been given [18]. The global
quantal canonical symmetry for a system with a singular first-order Lagrangian had also been
considered [19]. Here, the local and global quantal symmetry at the quantum level for a system
with a singular high-order Lagrangian will be studied further.

The paper is organized as follows. In section 2, based on the phase-space generating
functional of the Green function for a system with a singular higher-order Lagrangian, the
CWIs have been derived under the local and global transformation of canonical variables,
respectively. In section 3, the quantal conserved charge (QCC) under the global symmetry
transformation is also deduced. In general, these QCCs differ from classical Noether charges.
The connection between the symmetries and conservation laws in classical theories in general
is no longer preserved in quantum theories. In section 4, for the gauge-invariant system,
the quantal conservation laws connecting with the global symmetry in configuration-space
path integral deriving from the Faddeev–Popov (FP) trick is studied. In section 5, we give a
preliminary application of our results to Yang–Mills (YM) theory with higher-order derivatives;
a new form of gauge-ghost proper vertices are derived from both the CWIs for local and global
transformation, respectively. These gauge-ghost proper vertices differ from the usual Ward
identity arising from BRS invariance. Some new QCCs have also been obtained for higher-
derivative YM theory. The application of our formulation to non-Abelian higher-derivative CS
theory is discussed in section 6, and the quantal BRS conserved charge and conserved angular
momenta are derived. The results arising from the configuration-space generating functional
coincide with the results deriving from the phase-space generating functional. This conserved
angular momentum at the quantum level differs from the classical Noether one in that one
needs to take into account the contribution of the angular momenta of the ghost fields. The
problem of fraction spin in non-Abelian CS theory needs further study.

2. CWIs

2.1. Preliminaries

In order to formulate the path integral quantization for a system with a singular higher-order
Lagrangian, we start this section by reviewing very briefly the transformation from Lagrangian
to Hamiltonian formalism for such a system [16].

Let us consider a physical field defined by the field functionϕα(x)(α = 1, 2, . . . , n),
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x = (x0, xi), (x0 = t, i = 1, 2, 3), where the motion of the field is described by a Lagrangian
involving high-order derivatives in the form of a functional

L = L[ϕα(0), ϕ
α
(1), . . . , ϕ

α
(N)] =

∫
d3x L(ϕα, ϕα,µ, . . . , ϕα,µ(N)) (1)

where

ϕα(0) = ϕα ϕα(1) = ϕ̇ ϕα(2) = ϕ̈, . . . , ϕα,µ =
∂

∂xµ
ϕα ϕα,µ(m) = ∂µ, . . . , ∂σ︸ ︷︷ ︸

m

ϕα.

Using the Ostrogradsky transformation, we can transform the Lagrangian formalism to
Hamiltonian formalism for a system with a singular higher-order Lagrangian [16]. One
introduces the generalized canonical momenta

πα/m =
N−m∑
j=0

(−1)j
dj

dt j
δL

δϕα(j+m)

(2)

and using these relations one can move from the Lagrangian description to the Hamiltonian
description. The canonical Hamiltonian is defined by

Hc[ϕ
α
(m−1), πα/m] =

∫
d3xHc =

∫
d3x(πα/mϕ

α
(m) − L) (3)

which may be formed by eliminating only the highest derivativesϕα(N). The summation over
indicesα from 1 ton, m from 1 toN is taken repeatedly. For the singular LagrangianL, the
extended Hessian matrix(Hαβ) is degenerate:

det|Hαβ | = det|δ2L/δϕα(N)δϕ
β

(N)| = 0

hence one cannot solve allϕα(N) from the definition of the canonical momenta. Then there are
constraints among the canonical variables in phase space [20]:

80
α(ϕ

α
(m−1), πα/m) ≈ 0 (α = 1, 2, . . . , n− R) (4)

where the sign≈ (weak equality) means equality on the constrained hypersurface, the rank of
extended Hessian matrix is assumed to beR. Equation (4) represents the primary constraints.
Thus, a system with a singular higher-order Lagrangian is subject to some inherent phase-space
constraints and is called a generalized constrained Hamiltonian system. From the stationary of
constraint, one can define successively the secondary constraints from the primary ones. The
process of the consistency requirements will terminate at some stage when new constraints no
longer appear. All the constraints are classified into two classes. The constraints in the first
class are those whose generalized Poisson bracket with any of the constraints are equal to zero
or equal to the linear combination of the constraints; if this is not the case, the constraint is
called second class.

Let 3k(ϕ
α
(m−1), πα/m) ≈ 0 (k = 1, 2, . . . , K) be first-class constraints, and

θi(ϕ
α
(m−1), πα/m) ≈ 0 (i = 1, 2, . . . , I ) be second-class constraints. According to the rule of

path integral quantization, for each first-class constraint, one must choose a gauge condition.
The phase-space generating functional of the Green function for a system with a singular
higher-order Lagrangian can be written as [21]

Z[j,K] =
∫
Dϕα(m−1)Dπα/mδ(8)

√
det{8,8}

× exp

{
i
∫

d4x[πα/mϕ
α
(m) −Hc + jm−1

α ϕα(m−1) +Kα
mπα/m]

}
(5)

whereHc is a canonical Hamiltonian density,8 = {8n} is a set of all constraints (for a theory
with second-class constraints) or the set of constraints and gauge conditions (for a theory with
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first-class constraints),jm−1
α andKα

m are exterior sources with respect toϕα(m−1) andπα/m,
respectively. Using the properties of theδ-function and the integral over Grassmann variables
Cl(x) andC̄k(x), one gets

Z[j,K] =
∫
Dϕα(m−1)Dπα/mDλmDC̄kDCl × exp

{
i
∫

d4x[LPeff + jm−1
α ϕα(m−1) +Kα

mπα/m]

}
(6)

where

LPeff = πα/mϕα(m) −Hc + λn8n + 1
2

∫
d4xC̄k(x){8k(x),8l(y)}Cl(y) (7)

andλn(x) are Lagrange multipliers.

2.2. CWI for local transformation

For the sake of simplicity, we putφα(m−1) = (φα(m−1), λn, C̄k, Cl), J
m−1
α = (jm−1

α , ηn, ξk, ξ̄l)

whereηn, ξk and ξ̄l are exterior sources with respect toλn, C̄k andCl , respectively; then
expression (6) can be written as

Z[J,K] =
∫
Dφα(m−1)Dπα/m exp

{
i
∫

d4x[LPeff + Jm−1
α φα(m−1) +Kα

mπα/m]

}
. (8)

Let us consider an infinitesimal transformation in extended phase space

xµ = xµ +1xµ = xµ +Rµσ ε
σ (x)

φ′α(m−1)(x
′) = φα(m−1)(x) +1φα(m−1)(x) = φα(m−1)(x) + Sασ(m−1)ε

σ (x)

π ′α/m(x
′) = πα/m(x) +1πα/m(x) = πα/m(x) + Tσα/mε

σ (x)

(9)

whereεσ (x)(σ = 1, 2, . . . , r) are infinitesimal arbitrary functions, whose values and their
derivatives up to required order will vanish on the boundary of the time–space domain.Rασ ,
Sασ(m−1) andTσα/m are linear differential operators

Rµσ = aµν(k)σ ∂ν(k) Sασ(m−1) = bαν(l)σ (m−1)∂ν(l) Tσα/m = cν(m)σα/m∂ν(m)

ν(n) = µν, . . . , ρσ︸ ︷︷ ︸
n

∂ν(n) = ∂µ∂ν, . . . , ∂ρ∂σ︸ ︷︷ ︸
n

. (10)

a, b andc are functions ofx, φα(m−1) andπα/m. The variation of the effective canonical action
IPeff =

∫
d4xLPeff under transformation (9) is given by [16]

δIPeff =
∫

d4x

{
δIPeff

δφα(m−1)

δφα(m−1) +
δIPeff

δπα/m
δπα/m + ∂µ[(πα/mφ

α
(m) −Hc)1xµ]

+D[πα/mδφ
α
(m−1)]

}
(11)

whereD = d/dt , and

δφα(m−1) = 1φα(m−1) − φα(m−1),µ1x
µ δπα/m = 1πα/m − πα/m,µ1xµ (12)

δIPeff

δφα(m−1)

= −π̇α/m −
δHP

eff

δφα(m−1)

δIPeff

δπα/m
= φ̇α(m−1) −

δHP
eff

δπα/m
(13)

andHP
eff is a Hamiltonian connected withLPeff =

∫
d4xLPeff . The Jacobian of transformation

(9) is denoted byJ̄ [φ, π, ε]. For the invariant of the generating functional (8) under



Quantal symmetry for system with singular higher-order Lagrangian6395

transformation (9), one has

Z[J,K] =
∫
Dφα(m−1)Dπα/mJ̄ [φ, π, ε]

{
1 + iδIPeff + i

∫
d4x(Jm−1

α δφα(m−1) +Kα
mδπα/m)

+∂µ[(Jm−1
α φα(m−1) +Kα

mπα/m)1x
µ]

}
× exp

{
i
∫

d4x[LPeff + Jm−1
α φα(m−1) +Kα

mπα/m]

}
. (14)

This invariance implies that

δZ[J,K]

δεσ

∣∣∣∣
εσ=0

= 0.

Using the boundary conditions ofεσ (x) and functionally differentiating (14) with respect to
εσ (x) and settingJm−1

α = Kα
m = 0, one obtains∫

Dφα(m−1)Dπα/m

[
J 0
σ + S̃ασ(m−1)

(
δIPeff

δφα(m−1)

)
− R̃µσ

(
φα(m−1),µ

δIPeff

δφα(m−1)

)

+ T̃σα/m

(
δIPeff

δπα/m

)
− R̃µσ

(
πα/m,µ

δIPeff

δπα/m

)]
exp(iIPeff ) = 0 (15)

where

J 0
σ = −iδJ̄ [φ, π, ε]/δεσ |εσ=0

and R̃µσ , S̃ασ(m−1) and T̃σα/m are adjoint operators with respect toRµσ , Sασ(m−1) and Tσα/m,
respectively [22]. Using the boundary conditions ofεσ (x) and differentiating (14) with respect
to εσ (x) one can also obtain the CWI for a system with a singular higher-order Lagrangian for
the caseJ 0

σ = 0:[
S̃ασ(m−1)

(
δIPeff

δφα(m−1)

)
− R̃µσ

(
φα(m−1),µ

δIPeff

δφα(m−1)

)
+ S̃ασ(m−1)J

m−1
α − R̃µσ (φα(m−1),µJ

m−1
α )

+T̃σα/m

(
δIPeff

δπα/m

)
− R̃µσ

(
πα/m,µ

δIPeff

δπα/m

)
+ T̃σα/mK

α
m

−R̃µσ (πα/m,µKα
m)

]
φα
(m−1)→

δ

iδJm−1
α

πα/m→ δ
iδKαm

× Z[J,K] = 0. (16)

Functionally differentiating (16) with respect to the exterior sourcesJ 0
α many times and setting

all exterior sources equal to zero, one can obtain some relationships among the Green functions.

2.3. CWI for global transformation

Let us consider a global symmetry transformation in extended phase space whose infinitesimal
transformation is given by

xµ
′ = xµ +1xµ = xµ + εσ τ

µσ (x, φα(m−1), πα/m)

φα
′
(m−1)(x

′) = φα(m−1)(x) +1φα(m−1)(x) = φα(m−1)(x) + εσ ξ
µσ

(m−1)(x, φ
α
(m−1), πα/m)

π ′α/m(x
′) = πα/m(x) +1πα/m(x) = πα/m(x) + εσ η

σ
α/m(x, φ

α
(m−1), πα/m)

(17)

whereεσ (σ = 1, 2, . . . , r) are infinitesimal arbitrary parameters,τµσ , ξασ(m−1) andησα/m are
some functions ofx, φα(m−1) andπα/m. It is supposed that the effective canonical action is
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invariant under transformation (17) and that the Jacobian of transformation (17) is equal to
unity. According to the generating functional (8) is invariant under transformation (17); thus,
we have

Z[J,K] =
∫
Dφα(m−1)Dπα/m

(
1 + iεσ

∫
d4

{
Jm−1
α (ξασ(m−1) − φα(m−1),µτ

µσ )

+Kα
m(η

σ
α/m − πα/m,µτµσ ) + ∂µ[(Jm−1

α φα(m−1) +Kα
mπα/m)τ

µσ ]

})
× exp

{
i
∫

d4x[LPeff + Jm−1
α φα(m−1) +Kα

mπα/m]

}
=
(

1 + iεσ

∫
d4x

{
Jm−1
α

(
ξασ(m−1) − τµσ ∂µ

δ

iδJm−1
α

)
+Kα

m

(
ησα/m − τµσ ∂µ

δ

iδKα
m

)
+∂µ

[
τµσ

(
Jm−1
α

δ

iδJm−1
α

+Kα
m

δ

iδKα
m

)]})
φα
(m−1)→

δ

iδJm−1
α

πα/m→ δ
iδKαm

Z[J,K]. (18)

Consequently, we obtain the following results. If the effective canonical action is invariant
under transformation (17) and the Jacobian of this transformation is equal to unity, then the
phase-space generating functional of the Green function satisfies the following identities:∫

d4x

{
Jm−1
α

(
ξασ(m−1) − τµσ ∂µ

δ

iδJm−1
α

)
+Kα

m

(
ησα/m − τµσ ∂µ

δ

iδKα
m

)
+ ∂µ

[
τµσ

(
Jm−1
α

δ

iδJm−1
α

+Kα
m

δ

iδKα
m

)]}
φα
(m−1)→

δ

iδJm−1
α

πα/m→ δ
iδKαm

× Z[J,K] = 0. (19)

Expression (19) is called the CWI for global symmetry transformation in extended phase space.
For the internal symmetry transformationτµσ = 0, in this case, the identities (19) can be

written as∫
d4x

{
Jm−1
α ξασ(m−1)

(
x,

δ

iδJm−1
α

,
δ

iδKα
m

)
+Kα

mη
σ
α/m

(
x,

δ

iδJm−1
α

,
δ

iδKα

)}
× Z[J,K] = 0.

(20)

Functionally differentiating (19) with respect to the exterior sourcesJ 0
α many times and setting

all exterior sources equal to zero, one can obtain some relationships among the Green functions.

3. Quantal conserved laws

The connection between continuous global symmetries and conservation laws are usually
referred to as the first Noether theorem in classical theory. The generalized Noether theorem
in canonical formalism for singular higher-order Lagrangian has been derived in previous work
[16]. Here the realization of a canonical global symmetry at the quantum level is studied. It is
supposed that the effective canonical action is invariant under the transformation (17).

Let us consider the corresponding local transformation in extended phase space:

xµ
′ = xµ +1xµ = xµ + εσ (x)τ

µσ (x, φα(m−1), πα/m)

φα
′
(m−1)(x

′) = φα(m−1)(x) +1φα(m−1)(x) = φα(m−1)(x) + εσ (x)ξ
ασ
(m−1)(x, φ

α
(m−1), πα/m)

π ′α/m(x
′) = πα/m(x) +1πα/m(x) = πα/m(x) + εσ (x)η

σ
α/m(x, φ

α
(m−1), πα/m)

(21)
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whereεσ (x)(σ = 1, 2, . . . , r) are infinitesimal arbitrary functions, whose values and their
derivatives up to required order will vanish on the boundary of the time–space domain. Under
transformation (21) the variation of the effective canonical action is given by

δIPeff =
∫

d4xεσ (x)

{
δIPeff

δφα(m−1)

(ξασ(m−1) − φα(m−1),µτ
µσ ) +

δIPeff

δπα/m
(ησα/m − πα/m,µτµσ )

+∂µ[(πα/mφ
α
(m) −Heff )τµσ ] + D[πα/m(ξ

ασ
(m−1) − φα(m−1),µτ

µσ )]

}
+
∫

d4x{[(πα/mφα(m) −Heff )τµσ ]∂µεσ (x)

+πα/m(ξ
ασ
(m−1) − φα(m−1),µτ

µσ )Dεσ (x)}. (22)

Because the effective canonical action is invariant under the global transformation (17), thus
the first integral in expression (22) is equal to zero. According to the boundary conditions of
εσ (x) expression (22) can be written as

δIPeff =
∫

d4x{[(πα/mφα(m) −Heff )τµσ ]∂µεσ (x) + πα/m(ξ
ασ
(m−1) − φα(m−1),µτ

µσ )Dεσ (x)}

= −
∫

d4xεσ (x){∂µ[(πα/mφ
α
(m) −Heff )τµσ ]

+D[πα/m(ξ
ασ
(m−1) − φα(m−1),µτ

µσ )]}. (23)

The Jacobian of the transformation (21) is denoted byJ̄ [φ, π, ε]. Substituting (21) and
(23) into (8), according to the invariance of the phase-space generating functional (8) under
transformation (21), we have∫
Dφα(m−1)Dπα/m{∂µ[(πα/mφ

α
(m) −Heff )τµσ ]

+D[πα/m(ξ
ασ
(m−1) − φα(m−1),µτ

µσ )] − J σ0 −Mσ }

× exp

{
i
∫

d4x[LPeff + Jm−1
α φα(m−1) +Kα

mπα/m]

}
= 0 (24)

where

J σ0 = −iδJ̄ [φ, π, ε]/δεσ (x)|εσ=0 (25)

Mσ = Jm−1
α (ξασ(m−1) − φα(m−1),µτ

µσ ) +Kα
m(η

σ
α/m − πα/m,µτµσ ). (26)

Functionally differentiating (24) with respect toJ 0
σ (x)n times, one obtains∫

Dφα(m−1)Dπα/m
(
{∂µ[(πα/mφ

α
(m) −Heff )τµσ ]

+D[πα/m(ξ
ασ
(m−1) − φα(m−1),µτ

µσ )] − J σ0 −Mσ }φα(x1) . . . φ
α(xn)

−i
∑
j

φα(x1) . . . φ
α(xj−1)φ

α(xj+1) . . . φ
α(xn)N

ασ δ(x − xj )
)

× exp

{
i
∫

d4x[LPeff + Jm−1
α φα(m−1) +Kα

mπα/m]

}
= 0 (27)

where

Nασ = ξασ0 − φα,µτµσ . (28)
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Setting all exterior sources equal to zero in (27),Jm−1
α = Kα

m = 0, we obtain

〈0|T ∗{∂µ[(πα/mφ
α
(m) −Heff )τµσ ] + D[πα/m(ξ

ασ
(m−1) − φα(m−1),µτ

µσ )] − J σ0 }
×φα(x1) . . . φ

α(xn)|0〉
= i

∑
j

〈0|T ∗[φα(x1) . . . φ
α(xj−1)φ

α(xj+1) . . . φ
α(xn)N

ασ ]|0〉δ(x − xj ) (29)

where the symbol|0〉 indicates the vacuum state of the field, and the symbolT ∗ stands for the
covariantizedT product [9]. Fixingt and letting

t1, t2, . . . , tm→ +∞, tm+1, tm+2, . . . , tn→−∞
and using the reduction formula [10]. We find that expression (29) becomes

〈out, m|{∂µ[(πα/mφ
α
(m) −Heff )τµσ ] + D[πα/m(ξ

ασ
(m−1) − φα(m−1),µτ

µσ )] − J σ0 }|n−m, in〉
= 0. (30)

Sincem andn are arbitrary, this implies that

∂µ[(πα/mφ
α
(m) −Heff )τµσ ] + D[πα/m(ξ

ασ
(m−1) − φα(m−1),µτ

µσ )] = J σ0 . (31)

We now take a cylinder in four-dimensional time–space, the axis of which is directed along
thet axis and the upper and lower bottomsV1 andV2 are two like-space hypersurfacest = t1
and t = t2, respectively. If we assume that the fields have a configuration which vanishes
rapidly at spatial infinity, then taking the integral of expression (31) on this cylinder, we obtain
[16] ∫

d3x[πα/m(ξ
ασ
(m−1) − φα(m−1),kτ

kσ )−Heff τ 0σ ]

∣∣∣∣t2
t1

=
∫

d3xJ σ0 (32)

where the summation over indicesk from 1 to 3 are taken repeatedly. Consequently, we obtain
the following theorem. If the effective canonical action of a system is invariant under the
global transformation (17) and the Jacobian of the corresponding transformation (21) is equal
to a constant (or independent ofεσ (x)), then there are some conserved charges at the quantum
level for such a system:

Qσ =
∫

d3x[πα/m(ξ
ασ
(m−1) − φα(m−1),kτ

kσ )−Heff τ 0σ ] (σ = 1, 2, . . . , r). (33)

These results hold true for the anomaly-free theories.
The QCCs (33) correspond to the classical conservation laws deriving from canonical

Noether theorem [16]. In general,Heff differs from canonical HamiltonianHc which arise
from the effect of quantization of the constrained Hamiltonian system, thus, the QCCs (33)
are different from the Noether ones. There is nothing to be surprised at in this result, because
of the equations of motion in quantum theories for the constrained Hamiltonian system are
different from the classical ones. In classical theories of the constrained Hamiltonian system,
Dirac conjectured that all the first-class constraints (primary and secondary) are generators of
gauge transformation. In turn, this problem is closely related to the equivalence of Dirac’s
procedure using the extended HamiltonianHE and Lagrangian descriptions [23, 24]. From
time to time there have been objections to Dirac’s conjecture. All these objections are based
on the straightforward observation that the equations of the motion deriving fromHE are
not strictly equivalent to the corresponding Lagrangian equations. In certain cases one can
recover from the Hamiltonian equations of motion generated by the total HamiltonianHT to
the corresponding Lagrangian equations of motion. A counter-example was given by one of
the authors [25] to show that Dirac’s conjecture fails for a system with a singular higher-order
Lagrangian. In the quantum theories, based on the invariance of generating functional (8)
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under the translation of canonical variablesφα(m−1) andπα/m, one can proceed in the same way
as for the singular first-order Lagrangian to obtain the quantal canonical equations of motion
[17]:

φ̇α(m−1) =
δHeff

δπα/m
π̇α/m = − δHeff

δφα(m−1)

. (34)

These equations differ from classical ones whether Dirac’s conjecture holds true or not. Thus
the conserved charges at the quantum level are different from classical ones. In quantum
theories, the existence of conserved charges (33) means that effective canonical action (not
canonical action) is symmetric under the global transformation (17) and the measure of the
functional integral is invariant under the corresponding transformation. Thus, the connection
between the symmetries and conservation laws in classical theories in general is no longer
preserved in quantum theories.

For the case when the phase-space path integral can be simplified by carrying out
explicit integration over canonical momenta, and the phase-space generating functional can be
represented in the so-called Lagrangian form of a path integral only over the field variables of
the expression containing a certain effective Lagrangian in configuration space. The quantal
conserved charges can be obtained by analysing the symmetries of this effective Lagrangian
in configuration space. The advantage of the above formulation to obtain conserved charges
at the quantum level is that we do not need to carry out explicit integration over the canonical
momenta in the phase-space path integral. In general, such integration over canonical momenta
cannot be done.

4. Quantal symmetry in configuration space for a gauge-invariant system

For a system with a gauge-invariant LagrangianL involving higher-order derivatives of the
field variables, the effective LagrangianLeff in configuration space can be found by using the
FP trick through a transformation of the functional integral [21],Leff = L +Lf +Lgh, where
Lf is determined by the gauge conditions andLgh is a ghost term. The configuration-space
generating functional of the Green function for this system can be written as

Z[J ] =
∫
Dφα exp

{
i
∫

d4x(Leff + Jαφ
α)

}
(35)

whereφα represents all field variables.
Let us suppose that the effective action is invariant under a global infinitesimal

transformation in configuration space. Consider the corresponding local transformation

xµ = xµ +1xµ = xµ + εσ (x)τ
µσ (x, . . . , φ,µ(m), . . .)

φα
′
(x ′) = φα(x) +1φα(x) = φα(x) + εσ (x)ξ

ασ (x, . . . , φ,µ(m), . . .)
(36)

whereεσ (x)(σ = 1, 2, . . . , r) are infinitesimal arbitrary functions, whose values and their
derivatives up to required order will vanish on the boundary of the time–space domain. Under
transformation (36) the variation of effective action is given by [2]

1Ieff=
∫

d4xεσ (x)

{
δIeff

δφα
(ξασ − φα,µτµσ ) + ∂µ

[
Leff τµσ+

N−1∑
n=0

µν(n)∏
α

∂ν(n)(ξ
ασ−φα,ρτ ρσ )

]}

+
∫

d4x

{[
Leff τµσ +

N−1∑
n=0

µν(n)∏
α

∂ν(n)(ξ
ασ − φα,ρτ ρσ )

]
∂µεσ (x)

}
. (37)

Because the effective action is invariant under the global transformation, thus the first integral in
expression (37) is equal to zero. Accounting for the boundary conditions ofεσ (x), expression



6400 Z-p Li and Z-w Long

(37) can be written as

1Ieff = −
∫

d4xεσ (x)∂µ

[
Leff τµσ +

N−1∑
n=0

µν(n)∏
α

∂ν(n)(ξ
ασ − φα,ρτ ρσ )

]
. (38)

It is supposed that the Jacobian of the transformation (36) is equal to unity. The generating
functional (35) is invariant under transformation (36). We have

Z[J ] =
∫
Dφα

{
1− i

∫
d4xεσ (x)∂µ

[
Leff τµσ +

N−1∑
n=0

µν(n)∏
α

∂ν(n)(ξ
ασ − φα,ρτ ρσ )

]
+i
∫

d4xJαεσ (x)(ξ
ασ − φα,µτµσ )

}
× exp

{
iIeff + i

∫
d4xJαφ

α

}
. (39)

The invariance of generating functional (35) under transformation (36) implies that∫
Dφα

{
∂µ

[
Leff τµσ +

N−1∑
n=0

µν(n)∏
α

∂ν(n)(ξ
ασ − φα,ρτ ρσ )

]
− Jα(ξασ − φα,µτµσ )

}
× exp

{
iIeff + i

∫
d4xJαφ

α

}
= 0. (40)

Functionally differentiating (40) with respect to exterior sourcen times, one can proceed as
in section 3. We can obtain the conserved charges at the quantum level in configuration space
for such a system:

Qσ =
∫

d3x

[
Leff τ 0σ +

N−1∑
n=0

0ν(n)∏
α

∂ν(n)(ξ
ασ − φα,ρτ ρσ )

]
. (41)

Ward identities in the configuration space can also be deduced using a similar method.

5. YM theory with higher-order derivatives

The YM theory with higher-order derivatives Lagrangian is given by [21]

L = −1

4
FaµνF

aµν − 1

4α2
0

Da
bµF

b
νλD

aµ
c F

cλν (42)

Faµν = ∂µAaν − ∂νAaµ + f abcA
b
µA

c
ν (43)

Da
bµ = δab∂µ + f acbA

c
µ. (44)

In the Coulomb gauge the generating functional of the Green function for this system can
be written as [21]

Z[J, ξ, ξ̄ , η] =
∫
DAaµDAa(1)µDπ

µ

a/1Dπ
µ

a/2DCaDC̄aDλn′δ(8
G
a1)δ(8

G
a2)

× exp

{
i
∫

d4x[L̄Peff + Jµa A
a
µ + ξ̄ aCa + C̄aξa + ηn

′
λn′ ]

}
(45)

where

L̄Peff = LP + Lm + Lgh (46)

LP = πµa/1Ȧaµ + πµa/2Ȧ
a
(1)µ −Hc (47)

Lm = λa18(1)
a1 + λa28

(2)
a (48)

Lgh = C̄aDa
bi∂iCb (49)
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andHc is a canonical Hamiltonian density,πµa/1 andπµa/2 are canonical momenta conjugated to
Aaµ andAa(1)µ = Ȧaµ, respectively,8 and8G are constraints and gauge conditions, respectively.
In expression (45) we have introduced exterior sourcesJ

µ
a only to field Aaµ. The theory

is independent of the choice of gauge constraints [26], the8G
ai(i = 1, 2) can be replaced

by 8G′
ai = 8G

ai − Pai(x), wherePai(x) are independent of the gauge. Multiplying (45) by
exp[− 1

2αi

∫
d4x(Pai)

2] (αi are parameters) and taking the path integral with respect toPai(x),
we can obtain

Z[J, ξ, ξ̄ , η] =
∫
DAaµDAa(1)µDπ

µ

a/1Dπ
µ

a/2DCaDC̄aDλn′

× exp

{
i
∫

d4x[LPeff + Jµa A
a
µ + ξ̄ aCa + C̄aξa + ηn

′
λn′ ]

}
(50)

where

LPeff = L̄Peff + Lf (51)

Lf = − 1

2α1
(8G

a1)
2 − 1

2α2
(8G

a2)
2. (52)

It is easy to check thatLP andLgh are invariant under the following transformation [17, 27]:

Aa
′
µ (x) = Aaµ(x) +Da

σµε
σ (x) (53a)

Aa
′
(1)µ(x) = Aa(1)µ(x) + ∂0D

a
σµε

σ (x) (53b)

π
µ′
a/1(x) = πµa/1(x) + f aσcπ

µ

c/1(x)ε
σ (x) + f aσcµ

µ

c/2(x)ε̇
σ (x) (53c)

π
µ′
a/2(x) = πµa/2(x) + f aσcπ

µ

c/2(x)ε
σ (x) (53d)

Ca
′
(x) = Ca(x) + ig(Tσ )abC

b(x)εσ (x) (53e)

C̄a
′
(x) = C̄a(x)− igC̄b(x)(Tσ )baε

σ (x) +
ig

� ∂µ[C̄b(x)(Tσ )ba∂
µεσ (x)] (53f)

whereTσ are representation matrices of the generators of gauge group. The expression
(53f ) can be written as

C̄a
′ = C̄a(x)− igC̄b(x)(Tσ )baε

σ (x) + ig
∫

d4y10(x, y)∂µ[C̄b(x)(Tσ )ba∂
µεσ (x)] (54)

where

�10(x, y) = iδ(4)(x, y). (55)

The change ofLm + Lf is denoted by

δ(Lm + Lf ) = Fσ (λ,A, Ȧ, πa/1, πa/2)εσ (x) (56)

under transformation (53), whereFσ depends on multiplier fields,λn, and canonical variables.
Since J 0

σ = 0 for the transformation (53) [17, 28], according to the invariant of the
generating functional (50) under the transformation (53), we can obtain the CWI for the
transformation (53),{

iFσ − i∂µJ
µ
σ + gf aσcJ

µ
a

δ

δJ
µ
c

+ igξ̄a(Tσ )ab
δ

δξ̄b
− igξa(Tσ )ba

δ

δξb

+ ig∂µ

[
∂µ
(
ξa

1

�

)
(Tσ )ba

δ

δξb

]}
Z[J, ξ, ξ̄ , η] = 0. (57)
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As usual we letZ[J, ξ, ξ̄ , η] = exp{iW [J, ξ, ξ̄ , η]} and use the definition of generating
functional of proper vertices0[A, C̄, C, λ] which is given by performing a functional Legendre
transformation ofW [J, ξ, ξ̄ , η]. Then, the CWI (57) can be written as

iFσ + i∂µ
δ0

δAσµ
− igf aσcA

c
µ

δ0

δAaµ
− igCa(Tσ )ab

δ0

δCb
+ igC̄a(Tσ )ba

δ0

δC̄b

−ig∂µ
[
∂µ

(
δ0

δC̄a

1

�

)
(Tσ )baC̄

b

]
= 0. (58)

We functionally differentiate (58) with respect tōCk(x2) andC̄m(x3), and set all fields equal
to zero,A = C = C̄ = λ = 0. Then, we obtain

∂µx1

δ30[0]

δC̄k(x2)δCm(x3)δA
µ
σ (x1)

− g(Tσ )mb δ20[0]

δC̄k(x2)δCb(x1)
δ(x1− x3)

+g(Tσ )bk
δ20[0]

δC̄b(x1)δCm(x3)
δ(x1− x2)

−g∂µ
[
∂µ

(
δ20[0]

δC̄a(x1)δCm(x2)

1

�

)
(Tσ )kaδ(x1− x2)

]
= 0. (59)

Functionally differentiating (59) many times with respect to the field variables, one can obtain
various Ward identities for proper vertices.

Expression (59) is a new form of the Ward identities for gauge-ghost proper vertices
which differs from the Ward–Takahashi identities arising from the BRS invariance for an
effective Lagrangian in configuration space. The BRS transformation is nonlinear in ghost
fields, while the transformation (53) is a linear (non-local) one. The above formulation to
derive the Ward identities for proper vertices has significant advantage in that one does not
carry out the integration over canonical momenta in phase-space path integral. In a general
case this integration cannot be carried out. The invariance of the termsLP andLgh in (46)
under the transformation (53) is only required for deriving (59). This is also different from
BRS invariance for an effective Lagrangian. A similar problem in QCD has been discussed
by Kuang and Yi using the configuration space generating functional [28].

Let us putεσ (x) = εν0Aσν (x), whereεν0 are parameters, then, the transformation (53) will
be converted into a global one. In this case, from the CWI (20) for global transformation we
have∫

d4x

{
Fν − ∂µJµσ

δ

δJ νσ
− igf aσcJ

µ
a

δ

δJ
µ
c

δ

δJ νσ
+ gξ̄a(Tσ )ab

δ

δξ̄b

δ

δJ νσ
− gξ̄a(Tσ )ab δ

δξb

δ

δJ νσ

+
g

�∂µ
[
δ

δξb
(Tσ )baξa∂

µ δ

δJ νσ

]}
Z[J, ξ, ξ̄ , η] = 0 (60)

whereFν satisfy the relationδ(Lm + Lf ) = εν0Fν(λ,A, Ȧ, πa/1, πa/2). The expression (60)
can be written in terms of0[A, C̄, C, λ] as∫

d4x

{
Fν − Aσν ∂µ

δ0

δAσµ
− igf aσcA

σ
ν A

c
µ

δ0

δAaµ
+ gAσν C

a(Tσ )ab
δ0

δCb
− gAσν C̄a(Tσ )ba

δ0

δC̄b

+ gAσν ∂µ

[
∂µ

(
δ0

δC̄a

1

�

)
(Tσ )baC̄

b

]}
Z[J, ξ, ξ̄ , η] = 0. (61)

Functionally differentiating (61) with respect toAλ(x1), C̄k(x2) andCm(x3) and setting all
fields equal to zero, we can also obtain Ward identities (59) for gauge-ghost proper vertices.
That is to say, the identities (59) can be derived from both the CWIs for local and global
transformation.
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Furthermore,LP and Lgh are also invariant under this global transformation. The
variations of first-class constraints under the gauge transformation (53a)–(53d) are within
the constraint hypersurface [17], thusδLm ≈ 0 andδLf ≈ 0 under transformation (53), i.e.
δIeff ≈ 0 under the transformation (53). From (33) and (53) we obtain the QCC for YM field
with higher-order derivatives

Qν =
∫

d4x

{
π
µ

a/1D
a
σµA

σ
ν + πµa/2∂0(D

a
σµA

σ
ν ) + igπa(Tσ )abC

bAσν

−igπ̄a

[
C̄b(Tσ )baA

σ
ν −

∫
d4y10(x, y)∂µ(C̄

b(x)(Tσ )ba∂
µAσν (x)

]}
(62)

whereπµa/1, πµa/2, πa andπ̄a are canonical momenta conjugate to fieldsA
µ
a , Ȧµa , Ca andC̄a,

respectively.

π0
a/1 =

1

α2
0

Db
ajD

c
b0F

jo
c (63a)

πia/1 =
1

α2
0

(Dbj
a D

e
bjF

oi
e +Da

bjD
e
boF

ij
e )−Db

a0π
i
b/2 + Foia (63b)

π0
a/2 = 0 (63c)

πia/2 =
1

α2
0

Da
bjF

ij

b (63d)

πa = − ˙̄C
a

(63e)

π̄a = Da
b0C

b. (63f)

6. Non-Abelian higher-derivative CS theory

Non-Abelian CS gauge fields coupled to the Fermi field have been studied [29]. The quantal
canonical symmetries for such a system have been discussed in previous work [30]. Now, we
further study symmetry of the CS gauge fieldAaµ coupled to the scalar fieldφwhose Lagrangian
is given by

L = (Dµφ)
+(Dµφ)− 1

4
FaµνF

aµν +
κ

4π
εµνρ

(
∂µA

a
νA

a
ρ +

1

3
f abcAaµA

b
νA

c
ρ

)
− c

2

4π
DρF

a
µνD

ρF aµν (64)

where

Dµφ
α = ∂µφα + gAγµT

γ

αβφ
β

F aµν = ∂µAaν − ∂νAaµ + f abcAbµA
c
ν

andT a is a generator of gauge group. The gauge invariance of the non-Abelian CS term
requires the quantization of the dimensionless constantκ, κ = n

4π (n ∈ Z) [31].
According to the Ostrogradsky transformation one can introduce the canonical momenta

P aµ,Qaµ, π , π+ with respect toAaµ, Baµ = Ȧaµ, φ, φ+ respectively, and

P aµ = Faµ0 +
κ

4π
ε0µνAaν −

c2

π
DiD

iF aµ0 −D0Q
aµ − c

2

π
DiD0F

aµi + f abcAc0Q
bµ

Qaµ = c2

π
D0F

aµ0



6404 Z-p Li and Z-w Long

π = ∂L
∂φ̇
= (D0φ)

+

π+ = ∂L
∂φ̇+
= D0φ.

The constraints in phase space are:

3(0)a = Qa0 ≈ 0 (65)

3(1)a = −P a0 +DiQ
ai ≈ 0 (66)

3(2)a = −DiP
ai − κ

4π
∂iA

a
j ε
ij − f abcBbi Qci − f abcAb0DiQ

ci ≈ 0. (67)

It is easy to check that3(0), 3(1)a, 3(2)a are first-class constraints. A corresponding gauge
condition can be chosen that

�a0 = Ba0 ≈ 0 (68a)

�a1 = ∂iBai ≈ 0 (68b)

�a2 = ∂iAai ≈ 0. (68c)

Using the Faddeev–Senjavonic method [29], the phase-space generating functional for
this model can be written as

Z[J ] =
∫
DAaµDP aµDBaµDQaµDφDπDφ+Dπ+δ(3l)δ(�l) det{3,�}

× exp

{
i
∫

d3x(BaµP
aµ + ḂaµQ

aµ + πφ̇ + π+φ̇+

−Hc + Jµ1aA
a
µ + Jµ2aB

a
µ + J1φ + J +

1 φ
+)

}
(69)

where det{3,�} = detA · detMab · detMab, A = −δabδ(x − y). LetMc = (Mab); factor
detMcδ(∂iA

ai) can be replaced by detMlδ(∂µA
aµ) [29], and

Ml = (δab∂µ∂µ − f abcAcµ∂µ)δ(x − y).
Using the integral properties of Grassmann variablesCl(x) andC̄k(x), one gets

Z[J ] =
∫
DAaµDP aµDBaµDQaµDφDπDφ+Dπ+DλDCaDC̄a

× exp

{
i
∫

d3x[LPeff + Jµ1aA
a
µ + Jµ2aB

a
µ + J1φ + J +

1 φ
+ + J̄3aC

a + C̄aJ3a]

}
(70)

where
LPeff = LP + Lg + Lgh + Lm
LP = BaµP aµ + ḂaµQ

aµ + φ̇π + φ̇+π+ −Hc
Lg = − 1

2α2
(�a2)

2 = − 1

2α2
(∂µA

aµ)2

Lgh = −∂µC̄aDa
bµCb

Lm = λa03(0)a + λa13
(1)a + λa23

(2)a − 1

2α0
(�a0)

2 − 1

2α1
(�a1)

2.

(71)

Under the transformation in the phase space (whereτ is Grassmann’s parameter)
δφ = −iτT aCaφ δπ = iτT aCaπ

δφ+ = iτT aCaφ+ δπ+ = −iτT aCaπ+

δAaµ = −τDa
bµC

b δP aµ = f abeP eµCbτ − f abeQeµĊb

δBaµ = ∂0(−τDa
bµC

b) δQaµ = f abeQeµCbτ

δCa = 1
2f

aβγ CβCγ δC̄a = − 1

α2
∂µAaµ.

(72)
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The effective canonical LagrangianLPeff is invariant on the constraint hypersurface determined
by the constraints and the Jacobian of transformation (72) is equal to unity. From expression
(33), one obtains the BRS conserved quantity for non-Abelian higher-derivative CS theory at
the quantum level:

Q =
∫

d2x(P aµδAaµ +QaµδBaµ + πδφ + δφ+π+ + R̄aδC
a + δC̄aRa) (73)

whereR̄a andRa are the canonical momenta conjugate toCa andC̄a, respectively.
The effective canonical Lagrangian is also invariant under the spatial rotation

transformation in the(x1, x2) plane, and the Jacobian of the transformation of the fields is
equal to unity, andτ 0σ = 0 in the spatial rotation. Thus, from expression (33) we obtain the
conserved angular momentum for non-Abelian higher-derivative CS theory at the quantum
level

J12 =
∫

d2x

{
P aµ

(
x2
∂Aaµ

∂x1
− x1

∂Aaµ

∂x2

)
+Qaµ

(
x2
∂Baµ

∂x1
− x1

∂Baµ

∂x2

)
+ P aµ

(∑
12

)
µν

Aaν

+Qaµ

(∑
12

)
µν

Baν + π

(
x2
∂φ

∂x1
− x1

∂φ

∂x2

)
+

(
x2
∂φ+

∂x1
− x1

∂φ+

∂x2

)
π+

+ R̄a

(
x2
∂Ca

∂x1
− x1

∂Ca

∂x2

)
+

(
x2
∂C̄a

∂x1
− x1

∂C̄a

∂x2

)
Ra

}
(74)

where(
∑

jk)µν = gjµgkν − gjνgkµ.
Using the formulation discussed in section 4, we can obtain the same results from the

configuration-space generating functional. This implies that the FP trick is valid for these
higher-order derivative non-Abelian CS theories. We also see that the quantal conserved
angular momentum differs from classical Noether one [2] in that one needs to take into account
the contribution of angular momentum of ghost fields in non-Abelian higher-derivative CS
theory. For the case of the first-order derivative non-Abelian CS theories,c = 0, one can
proceed in the same way to obtain the results. This problem has been discussed in classical
theories [32, 33]. We do not think the conclusions in classical theories are always valid at the
quantum level. The properties of fractional spin and statistics in non-Abelian CS theory needs
further study.

The advantage of the canonical formalism to derive the conservation laws at the quantum
level is that one does not need to carry out the integration over the canonical momenta in the
phase-space path integral.

It had been pointed out that the anomalies can be viewed as being a result of the non-
invariance of the functional measure under some symmetry transformation [34]. The above
results indicate that the anomalies may be appearing in a case with an invariance of the
functional measure under the symmetry transformation.

7. Conclusions

In the theory of path integral quantization for a dynamical system, the phase-space path integrals
are more basic than configuration-space path integrals. Based on the phase-space generating
functional of the Green function for a system with a singular higher-order Lagrangian, the
canonical symmetry for such a system at the quantum level is studied. The CWIs for the local
and global transformation in extended phase space have been deduced, respectively. The QCC
under the global symmetry transformation in extended phase space has been also deduced. The
existence of this conserved quantity means that the effective canonical action is symmetric and
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constraint conditions are preserved in the constrained hypersurface under the transformation,
and that the Jacobian of the corresponding transformation is equal to unity. In general, this
conserved charge at the quantum level differs from the Noether ones in classical theories. The
connection between symmetry and conservation law in classical theories in general is no longer
preserved in quantum theories. The advantage of our canonical formalism is that one does not
need to carry out the integration over canonical momenta in the phase-space path integral as
usual. In general, that integration cannot be carried out. The application of the above results to
YM and CS theory with higher-order derivatives have been given, a new form of gauge-ghost
proper vertices was derived from both the CWI for local and global transformation, and new
conserved charges at quantum level were obtained in YM theory. The quantal BRS conserved
charge and conserved angular momentum were also derived in CS theory: this conserved
angular momentum differs from the classical Noether one. For the gauge-invariant system, a
comparison of the quantal conservation laws in canonical formalism with the results deriving
from the FP trick in configuration-space path integral were discussed.

Numerous recent investigation of(2 + 1)-dimensional gauge theories with CS terms in
the Lagrangian have revealed the occurrence of fractional spin and statistics [35, 36]. In those
papers the angular momenta were deduced by using the classical Noether theorem. We have
shown that the conclusion holds true for Abelian CS theory at the quantum level [37]. But
whether the results are valid or not at the quantum level for non-Abelian CS theory requires
further study. Work along these lines is in progress.
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